Sources, sinks and wavenumber selection in coupled CGL equations and experimental implications for counter-propagating wave systems

نویسندگان

  • Martin van Hecke
  • Cornelis Storm
چکیده

We study the coupled complex Ginzburg-Landau (CGL) equations for traveling wave systems, and show that sources and sinks are the important coherent structures that organize much of the dynamical properties of traveling wave systems. We focus on the regime in which sources and sinks separate patches of left and righttraveling waves, i.e., the case that these modes suppress each other. We present in detail the framework to analyze these coherent structures, and show that the theory predicts a number of general properties which can be tested directly in experiments. Our counting arguments for the multiplicities of these structures show that independently of the precise values of the coefficients in the equations, there generally exists a symmetric stationary source solution, which sends out waves with a unique frequency and wave number. Sinks, on the other hand, occur in two-parameter families, and play an essentially passive role, being sandwiched between the sources. These simple but general results imply that sources are important in organizing the dynamics of the coupled CGL equations. Simulations show that the consequences of the wavenumber selection by the sources is reminiscent of a similar selection by spirals in the 2D complex Ginzburg Landau equations; sources can send out stable waves, convectively unstable waves, or absolutely unstable waves. We show that there exists an additional dynamical regime where both singleand bimodal states are unstable; the ensuing chaotic states have no counterpart in single amplitude equations. A third dynamical mechanism is associated with the fact that the width of the sources does not show simple scaling with the growth rate ε. This is related to the fact that the standard coupled CGL equations are not uniform in ε. In particular, when the group velocity term dominates over the linear growth term, no stationary source can exist; however, sources displaying nontrivial dynamics can often survive here. Our results for the existence, multiplicity, wavelength selection, Preprint submitted to Elsevier Preprint 9 February 2008 dynamics and scaling of sources and sinks and the patterns they generate are easily accessible by experiments. We therefore advocate a study of the sources and sinks as a means to probe traveling wave systems and compare theory and experiment. In addition, they bring up a large number of new research issues and open problems, which are listed explicitly in the concluding section. PACS: 47.54.+r; 03.40.Kf; 47.20.Bp; 47.20.Ky

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear dynamics of waves and modulated waves in 1D thermocapillary flows. I: General presentation and periodic solutions

We present experimental results on hydrothermal traveling-waves dynamics in long and narrow 1D channels. The onset of primary traveling-wave patterns is briefly presented for different fluid heights and for annular or bounded channels, i.e., within periodic or non-periodic boundary conditions. For periodic boundary conditions, by increasing the control parameter or changing the discrete mean-wa...

متن کامل

STABILITY ANALYSIS FROM FOURTH ORDER NONLINEAR EVOLUTION EQUATIONS FOR TWO CAPILLARY GRAVITY WAVE PACKETS IN THE PRESENCE OF WIND OWING OVER WATER.

Asymptotically exact and nonlocal fourth order nonlinear evolution equations are derived for two coupled fourth order nonlinear evolution equations have been derived in deep water for two capillary-gravity wave packets propagating in the same direction in the presence of wind flowing over water.We have used a general method, based on Zakharov integral equation.On the basis of these evolution eq...

متن کامل

A Potential Method for Body and Surface Wave Propagation in Transversely Isotropic Half- and Full-Spaces

The problem of propagation of plane wave including body and surface waves propagating in a transversely isotropic half-space with a depth-wise axis of material symmetry is investigated in details. Using the advantage of representation of displacement fields in terms of two complete scalar potential functions, the coupled equations of motion are uncoupled and reduced to two independent equations...

متن کامل

Wavenumber selection in coupled transport equations.

We study mechanisms for wavenumber selection in a minimal model for run-and-tumble dynamics. We show that nonlinearity in tumbling rates induces the existence of a plethora of traveling- and standing-wave patterns, as well as a subtle selection mechanism for the wavenumbers of spatio-temporally periodic waves. We comment on possible implications for rippling patterns observed in colonies of myx...

متن کامل

2 2 M ar 2 00 5 Modulational instability of two pairs of counter - propagating waves and energy exchange in two - component media

The dynamics of two pairs of counter-propagating waves in two-component media is considered within the framework of two generally nonintegrable coupled Sine-Gordon equations. We consider the dynamics of weakly nonlinear wave packets, and using an asymptotic multiple-scales expansion we obtain a suite of evolution equations to describe energy exchange between the two components of the system. De...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999